$\label{eq:selective} \mbox{Selective and Convenient Enzymatic Separation of} \\ \mbox{Geometric Isomers of N-Protected-α-dehydrophenylalanine Esters}$

Chung-gi SHIN* and Masashi SEKI
Laboratory of Organic Chemistry, Faculty of Technology, Kanagawa University,
Kanagawa-ku, Yokohama 221

Selective enzymatic hydrolysis of a mixture of (Z)- and (E)-N-protected- Δ Phe-OMe with α -chymotrypsin A took place to give (Z)- Δ Phe-OH and (E)- Δ Phe-OMe.

In the previous papers, $^{1,2)}$ we have reported a highly selective enzymatic hydrolysis of α - and γ -esters of methyl (Z)-N-benzyloxycarbonyl- γ -methyl- α -dehydroglutamate with papain and α -chymotrypsin A (CT), respectively. Here, we wish to report a convenient hydrolytic separation of geometric isomers of N-benzoyl- α -dehydrophenylalanine methyl ester $\{(Z,E)-Bz-\Delta Phe-OMe; 1\}$ by using CT (EC 3.4.22.2).

As the substrate of the enzymatic reaction, a 1:1 mixture of geometric isomers of $\underline{1}^{3}$ was prepared according to the method of Schmidt \underline{et} $\underline{al}.^{4}$ A solution of $(\mathbf{Z},\mathbf{E})-\underline{1}$ [$10\,\mathrm{mM}$ ($1\,\mathrm{M}=1\,\mathrm{mol}$ dm $^{-3}$), $14\,\mathrm{mg}$] and CT (39 units/mg, 0.04 mM) in buffer (McIlvaine buffer: DMSO = 95: 5 v/v) was incubated in the presence of CaCl_2 ($15\,\mathrm{ml}$), with shaking at pH 8 at 35 °C for 24 h. Then 10% citric acid ($20\,\mathrm{ml}$) was added, and the resulting solution was extracted with AcOEt. The organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_2\mathrm{SO}_4$ and then concentrated $\underline{\mathrm{in}}$ vacuo. The obtained products were identified and determined by comparing their HPLC (eluent MeOH: $\mathrm{H}_2\mathrm{O}=60:40\,\mathrm{v/v}$) peaks with those of the compound prepared independently. Thus, it was found that two products, (Z)-Bz-APhe-OH (2) as the hydrolyzate and unchanged (E)-Bz-APhe-OMe (3), were isolated separately (Scheme 1). The optimal pH value of the ester hydrolysis of (2)-1 was about 9.

In order to purify the respective products, the crude mixture of (Z)-2 and (E)-3 obtained above was dissolved in AcOEt (10 ml) and the resulting solution was treated with a saturated NaHCO $_3$ aqueous solution (20 ml). The aqueous layer was acidified to pH 2 with 6 M-HCl and extracted with AcOEt. The extract was washed with brine and dried over anhydrous Na $_2$ SO $_4$. Concentration in vacuo and further purification gave (Z)-2 as crystals. On the other hand, a similar work-up of the organic layer, followed by

Scheme 1.

purification of the residue gave (E)-3.⁷⁾

To examine the effect of the N-protecting groups, the hydrolysis of various (Z)-X-ΔPhe-OMe derivatives was carried out under same conditions. As the results summarized in Table 1 show, the benzoyl group was found to be superior to the urethane type groups [X=COOMe, COOEt, COOBuⁿ, and COOBz1]. 5)

References

Table 1. Effect of N-protecting Ph C=C NH-X a)

Х	Yield/%	х	Yield/%
-COMe	0	-COOMe	52
-COPh	76	-COOEt	58
	90 ^{b)}	-coobu ⁿ	64
		-COOBzl	49

a) The reaction mixture (5 ml), containing 10 mM substrate and 1.6 g/l CT in buffer (McIlvaine buffer: DMSO = 95:5 v/v, pH 8.0), was shaken at 35 °C for 24 h. b) At pH 9.0.

- 1) C. Shin, N. Takahashi, and Y. Yonezawa, Chem. Lett., 1988, 2001.
- 2) C. Shin, M. Seki, and N. Takahashi, Chem. Lett., 1990, 2089.
- 3) (Z,E)- $\underline{1}$: Yield 81%, colorless crystals. (Z)- $\underline{1}$; NMR (CDCl₃): δ 3.88 (s, 3H, OCH₃), 7.79 (bs, 1H, NH). (E)- $\underline{1}$: δ 3.68 (s, 3H, OCH₃), 8.55 (bs, 1H, NH).
- 4) U. Schmidt, A. Lieberknecht, and J. Wild, Synthesis, 1984, 53.
- 5) C. Shin, N. Takahashi, and Y. Yonezawa, Chem. Pharm. Bull., <u>38</u>, 2020 (1990).
- 6) (Z)-2: Yield 90%, mp 215-216 °C (dec.), colorless needles from hexane-AcOEt. IR (KBr): 3310 (NH), 1690 (C=O) cm $^{-1}$. NMR (DMSO- \underline{d}_6): δ 9.95 (s, 1H, COOH), 7.67-7.36 (m, 12H, 2C $_6$ H $_5$ + =CH + NH).
- 7) (E) -3: Yield 95%, mp 131-132 °C, colorless prisms from hexane-AcOEt. IR (KBr): 3310 (NH), 1725 (C=O) cm⁻¹. NMR (DMSO- \underline{d}_6): δ 8.55 (bs, 1H, NH), 7.94-7.28 (m, 11H, 2C₆H₅ + =CH), 3.66 (s, 3H, COOCH₃).

(Received February 12, 1991)